Dear Sreenadh Ji,
I wish you to keep on your attempts but also wish that side by side, you also study the original texts as well. This book requires the sharp researcher like you.Group member will surely extend their hands for any clarification regarding Lalkitab texts.
Regards
Nirmal
--- In
astrostudents@yahoogroups.com, Sreenadh OG <sreesog@...> wrote:
>
> Dear All,
> Â One more review in this line. The content of the same is attached as pdf as well.
> ========================
>
>
> Review â€" 8 (a)
>
> One more review in LK review
> series â€" this time to correct one big mistake I have done in my previous
> review, where in I boldly stated that I have succeeded in deciphering LK
> Varshaphala table. No, it is not true. Diving a bit more into LK varshaphala
> table I have realized my mistake and learned that the available LK table is bit
> more mysterious than I thought it to be.Â
> Let me explain why I think so.
>
> The house numbers from 1 to 12
> only should be used to construct the Varshaphal table. Thus it is like a
> Tantric magic square of numbers. In the table till 120 years there are a total
> of 10 sections. Since in each section the first column values don’t change it
> is easy to identify each section by looking for the sequence
> 1-4-9-3-11-5-7-2-12-10-8-6 in the first column. We need to consider each one of
> these 12 sections and the common rules that apply to each of these sections.
>
> Each of these sections in the LK Varshaphal
> table follows some basic rules. They are â€"
>
> 1)Â Â Â Â Â
> No value should repeat horizontally in a row. i.e. each
> number from 1-12 should occur only once horizontally in the same row.
>
> 2)Â Â Â Â Â
> No value should repeat vertically in a column. i.e.
> each number from 1-12 should occur only once horizontally in a column.
>
> 3)Â Â Â Â Â
> The first column should be kept constant (unchanging)
>
> And we realize that each section
> in LK Varshaphal tables adhere to these three basic rules strictly! Note that
> the above modified table I have provided also follows these two rules strictly.
> But when the available LK Varshaphal table itself follows these two rules
> strictly, even though I can’t find a pattern in their (similar to the clear
> patter repeating of numbers present in the table I have provided), I don’t have
> any right to change the available LK varshaphal table. Thus clearly the table I
> have provided should not be accepted, even though identification of
> similarities between such patterns and the values in LK could be of much help
> in deciphering the LK Varshaphal sequence and arriving at some final answer. So
> let us drop the table I have provided and go back to the LK table itself trying
> to understand it better. Some questions
> and answers that comes to mind are â€"
>
> 1)Â Â Â Â Â
> Qn: LK Varshaphal table is a collection of ten 12 x 12
> matrices. If each of those 12 x 12 matrices follows the above rules, and if
> first column of these matrices are kept constent (unchanging) how many such
> matrices which satisfies the above three conditions can be made?
>
> Ans: Numerous or
> Thousands! For example note that in a 3 x 3 matrix only two such combinations
> are possible.
>
> 1 2 3 Â Â Â Â Â Â Â Â Â Â Â Â Â Â 1 3 2
>
> 2 3 1 Â Â Â Â Â Â Â Â Â Â Â Â Â Â 2 1 3
>
> 3 1 2Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 3 2 1
>
> If it is a 4 x 4
> matrix then the possibilities will increase.
>
> 1 2 3 4 Â Â Â Â Â Â Â Â Â Â Â 1 3 2 4Â Â Â Â Â Â Â Â Â Â Â Â 1 4 3 2Â Â Â Â Â Â Â Â Â Â Â Â 1
> 2 4 3
>
> 2 3 4 1Â Â Â Â Â Â Â Â Â Â Â Â 2 4 3 1Â Â Â Â Â Â Â Â Â Â Â Â 2 1 4 3Â Â Â Â Â Â Â Â Â Â Â Â 2
> 3 1 4
>
> 3 4 1 2Â Â Â Â Â Â Â Â Â Â Â Â 3 1 4 2Â Â Â Â Â Â Â Â Â Â Â Â 3 2 1 4Â Â Â Â Â Â Â Â Â Â Â Â 3
> 4 2 1
>
> 4 1 2 3Â Â Â Â Â Â Â Â Â Â Â Â 4 2 1 3Â Â Â Â Â Â Â Â Â Â Â Â 4 3 2 1Â Â Â Â Â Â Â Â Â Â Â Â 4
> 1 3 2
>
> Let us create
> some new items by changing row values â€"
>
> 1 2 3 4
>
> 2 4 1 3
>
> 3 1 4 2
>
> 4 3 2 1
>
> As you could see
> this combination is not present above. Now let us exchange columns (as done
> above) to create more items â€"
>
> 1 2 3 4Â Â Â Â Â Â Â Â Â Â Â Â 1 3 2 4Â Â Â Â Â Â Â Â Â Â Â Â 1 4 3 2Â Â Â Â Â Â Â Â Â Â Â Â 1
> 2 4 3
>
> 2 4 1 3Â Â Â Â Â Â Â Â Â Â Â Â 2 1 4 3Â Â Â Â Â Â Â Â Â Â Â Â 2 3 1 4Â Â Â Â Â Â Â Â Â Â Â Â 2
> 4 3 1
>
> 3 1 4 2Â Â Â Â Â Â Â Â Â Â Â Â 3 4 1 2Â Â Â Â Â Â Â Â Â Â Â Â 3 2 4 1Â Â Â Â Â Â Â Â Â Â Â Â 3
> 1 2 4
>
> 4 3 2 1Â Â Â Â Â Â Â Â Â Â Â Â 4 2 3 1Â Â Â Â Â Â Â Â Â Â Â Â 4 1 2 3Â Â Â Â Â Â Â Â Â Â Â Â 4
> 3 1 2
>
> And again you
> can go own creating such tables by changing some other row values. And even a 4
> x 4 matrix can provide us with more than 16 such unique matrices for which
> neither the row values nor the column values repeat, and the first column stays
> constant. If it is the case with even a 4 x 4 matrix, imagine what would be the
> case and possibility with a 12 x 12 matrix! Certainly hundreds of such matrices
> would be possible in that case.
>
> Â
>
> 2)Â Â Â Â Â
> Qn: Now the question is HOW to make such alternate
> combinations without much effort?
>
> Ans: The simple
> answer is - interchange the columns to make new magic tables that satisfy the
> above rules.
>
> 3)Â Â Â Â Â
> Qn: Is it that only through interchanging the columns
> only you can make magic tables that satisfies the above condition?
>
> Ans: No. We can
> create such magic tables by interchange some row values as well.
>
> 4)Â Â Â Â Â
> Qn: In the case of a 12 x 12 table how many such magic
> tables can be prepared?
>
> Ans: Hundreds if
> not thousands!
>
> 5)Â Â Â Â Â
> Qn: Can you show me this process for example by taking
> one section of LK Varshaphal table, please.Â
>
>
> Ans: Sure I
> will.
>
> 6)Â Â Â Â Â
> Qn: If hundreds of such magic squares are possible with
> these numbers from 1 to 12, then why did LK system opted for the use of these
> PARTICULAR 10 matrices (magic squares) out of the hundreds available?
>
> Ans: I really
> don’t know! But certainly it is in identifying this that the secret of LK
> Varshaphal table lies! If the secret behind this selection of a subset of
> matrices from the hundreds of such matrices available that means the secret
> behind LK Varshaphal table is cracked. But as of now we don’t know this secret.
>
> 7)Â Â Â Â Â
> Qn: So you meant to say you don’t know the secret
> behind LK Varshaphal table?
>
> Ans: Yes.
>
> OK. That is the status and our
> knowledge as of now about this table. As promised above let us try to show some
> possible matrices that abide by the three base rules regarding this table. I am
> listing some of them below for the first sub-section (12 x 12 matrix) of LK
> table. Â I have just taken the fist
> sub-section of LK-table and only one column is interchanged with another
> column. The first column is kept constant. Please note that all such sub-tables
> fulfill the three LK base rules (such as house numbers should not repeat in row
> or column, and the first column should not be touched) without any issue.
>
> Â
>
>
>
>
> 1
>
>
> 9
>
>
> 10
>
>
> 3
>
>
> 5
>
>
> 2
>
>
> 11
>
>
> 7
>
>
> 6
>
>
> 12
>
>
> 4
>
>
> 8
>
>
>
>
> 4
>
>
> 1
>
>
> 12
>
>
> 9
>
>
> 3
>
>
> 7
>
>
> 5
>
>
> 6
>
>
> 2
>
>
> 8
>
>
> 10
>
>
> 11
>
>
>
>
> 9
>
>
> 4
>
>
> 1
>
>
> 2
>
>
> 8
>
>
> 3
>
>
> 10
>
>
> 5
>
>
> 7
>
>
> 11
>
>
> 12
>
>
> 6
>
>
>
>
> 3
>
>
> 8
>
>
> 4
>
>
> 1
>
>
> 10
>
>
> 9
>
>
> 6
>
>
> 11
>
>
> 5
>
>
> 7
>
>
> 2
>
>
> 12
>
>
>
>
> 11
>
>
> 3
>
>
> 8
>
>
> 4
>
>
> 1
>
>
> 5
>
>
> 9
>
>
> 2
>
>
> 12
>
>
> 6
>
>
> 7
>
>
> 10
>
>
>
>
> 5
>
>
> 12
>
>
> 3
>
>
> 8
>
>
> 4
>
>
> 11
>
>
> 2
>
>
> 9
>
>
> 1
>
>
> 10
>
>
> 6
>
>
> 7
>
>
>
>
> 7
>
>
> 6
>
>
> 9
>
>
> 5
>
>
> 12
>
>
> 4
>
>
> 1
>
>
> 10
>
>
> 11
>
>
> 2
>
>
> 8
>
>
> 3
>
>
>
>
> 2
>
>
> 7
>
>
> 6
>
>
> 12
>
>
> 9
>
>
> 10
>
>
> 3
>
>
> 1
>
>
> 8
>
>
> 5
>
>
> 11
>
>
> 4
>
>
>
>
> 12
>
>
> 2
>
>
> 7
>
>
> 6
>
>
> 11
>
>
> 1
>
>
> 8
>
>
> 4
>
>
> 10
>
>
> 3
>
>
> 5
>
>
> 9
>
>
>
>
> 10
>
>
> 11
>
>
> 2
>
>
> 7
>
>
> 6
>
>
> 12
>
>
> 4
>
>
> 8
>
>
> 3
>
>
> 1
>
>
> 9
>
>
> 5
>
>
>
>
> 8
>
>
> 5
>
>
> 11
>
>
> 10
>
>
> 7
>
>
> 6
>
>
> 12
>
>
> 3
>
>
> 9
>
>
> 4
>
>
> 1
>
>
> 2
>
>
>
>
> 6
>
>
> 10
>
>
> 5
>
>
> 11
>
>
> 2
>
>
> 8
>
>
> 7
>
>
> 12
>
>
> 4
>
>
> 9
>
>
> 3
>
>
> 1
>
>
>
>
> Â
>
>
>
>
> 1
>
>
> 10
>
>
> 9
>
>
> 3
>
>
> 5
>
>
> 2
>
>
> 11
>
>
> 7
>
>
> 6
>
>
> 12
>
>
> 4
>
>
> 8
>
>
>
>
> 4
>
>
> 12
>
>
> 1
>
>
> 9
>
>
> 3
>
>
> 7
>
>
> 5
>
>
> 6
>
>
> 2
>
>
> 8
>
>
> 10
>
>
> 11
>
>
>
>
> 9
>
>
> 1
>
>
> 4
>
>
> 2
>
>
> 8
>
>
> 3
>
>
> 10
>
>
> 5
>
>
> 7
>
>
> 11
>
>
> 12
>
>
> 6
>
>
>
>
> 3
>
>
> 4
>
>
> 8
>
>
> 1
>
>
> 10
>
>
> 9
>
>
> 6
>
>
> 11
>
>
> 5
>
>
> 7
>
>
> 2
>
>
> 12
>
>
>
>
> 11
>
>
> 8
>
>
> 3
>
>
> 4
>
>
> 1
>
>
> 5
>
>
> 9
>
>
> 2
>
>
> 12
>
>
> 6
>
>
> 7
>
>
> 10
>
>
>
>
> 5
>
>
> 3
>
>
> 12
>
>
> 8
>
>
> 4
>
>
> 11
>
>
> 2
>
>
> 9
>
>
> 1
>
>
> 10
>
>
> 6
>
>
> 7
>
>
>
>
> 7
>
>
> 9
>
>
> 6
>
>
> 5
>
>
> 12
>
>
> 4
>
>
> 1
>
>
> 10
>
>
> 11
>
>
> 2
>
>
> 8
>
>
> 3
>
>
>
>
> 2
>
>
> 6
>
>
> 7
>
>
> 12
>
>
> 9
>
>
> 10
>
>
> 3
>
>
> 1
>
>
> 8
>
>
> 5
>
>
> 11
>
>
> 4
>
>
>
>
> 12
>
>
> 7
>
>
> 2
>
>
> 6
>
>
> 11
>
>
> 1
>
>
> 8
>
>
> 4
>
>
> 10
>
>
> 3
>
>
> 5
>
>
> 9
>
>
>
>
> 10
>
>
> 2
>
>
> 11
>
>
> 7
>
>
> 6
>
>
> 12
>
>
> 4
>
>
> 8
>
>
> 3
>
>
> 1
>
>
> 9
>
>
> 5
>
>
>
>
> 8
>
>
> 11
>
>
> 5
>
>
> 10
>
>
> 7
>
>
> 6
>
>
> 12
>
>
> 3
>
>
> 9
>
>
> 4
>
>
> 1
>
>
> 2
>
>
>
>
> 6
>
>
> 5
>
>
> 10
>
>
> 11
>
>
> 2
>
>
> 8
>
>
> 7
>
>
> 12
>
>
> 4
>
>
> 9
>
>
> 3
>
>
> 1
>
>
>
>
> Â
>
>
>
>
> 1
>
>
> 3
>
>
> 10
>
>
> 9
>
>
> 5
>
>
> 2
>
>
> 11
>
>
> 7
>
>
> 6
>
>
> 12
>
>
> 4
>
>
> 8
>
>
>
>
> 4
>
>
> 9
>
>
> 12
>
>
> 1
>
>
> 3
>
>
> 7
>
>
> 5
>
>
> 6
>
>
> 2
>
>
> 8
>
>
> 10
>
>
> 11
>
>
>
>
> 9
>
>
> 2
>
>
> 1
>
>
> 4
>
>
> 8
>
>
> 3
>
>
> 10
>
>
> 5
>
>
> 7
>
>
> 11
>
>
> 12
>
>
> 6
>
>
>
>
> 3
>
>
> 1
>
>
> 4
>
>
> 8
>
>
> 10
>
>
> 9
>
>
> 6
>
>
> 11
>
>
> 5
>
>
> 7
>
>
> 2
>
>
> 12
>
>
>
>
> 11
>
>
> 4
>
>
> 8
>
>
> 3
>
>
> 1
>
>
> 5
>
>
> 9
>
>
> 2
>
>
> 12
>
>
> 6
>
>
> 7
>
>
> 10
>
>
>
>
> 5
>
>
> 8
>
>
> 3
>
>
> 12
>
>
> 4
>
>
> 11
>
>
> 2
>
>
> 9
>
>
> 1
>
>
> 10
>
>
> 6
>
>
> 7
>
>
>
>
> 7
>
>
> 5
>
>
> 9
>
>
> 6
>
>
> 12
>
>
> 4
>
>
> 1
>
>
> 10
>
>
> 11
>
>
> 2
>
>
> 8
>
>
> 3
>
>
>
>
> 2
>
>
> 12
>
>
> 6
>
>
> 7
>
>
> 9
>
>
> 10
>
>
> 3
>
>
> 1
>
>
> 8
>
>
> 5
>
>
> 11
>
>
> 4
>
>
>
>
> 12
>
>
> 6
>
>
> 7
>
>
> 2
>
>
> 11
>
>
> 1
>
>
> 8
>
>
> 4
>
>
> 10
>
>
> 3
>
>
> 5
>
>
> 9
>
>
>
>
> 10
>
>
> 7
>
>
> 2
>
>
> 11
>
>
> 6
>
>
> 12
>
>
> 4
>
>
> 8
>
>
> 3
>
>
> 1
>
>
> 9
>
>
> 5
>
>
>
>
> 8
>
>
> 10
>
>
> 11
>
>
> 5
>
>
> 7
>
>
> 6
>
>
> 12
>
>
> 3
>
>
> 9
>
>
> 4
>
>
> 1
>
>
> 2
>
>
>
>
> 6
>
>
> 11
>
>
> 5
>
>
> 10
>
>
> 2
>
>
> 8
>
>
> 7
>
>
> 12
>
>
> 4
>
>
> 9
>
>
> 3
>
>
> 1
>
>
>
>
> Â
>
>
>
>
> 1
>
>
> 5
>
>
> 10
>
>
> 9
>
>
> 5
>
>
> 2
>
>
> 11
>
>
> 7
>
>
> 6
>
>
> 12
>
>
> 4
>
>
> 8
>
>
>
>
> 4
>
>
> 3
>
>
> 12
>
>
> 1
>
>
> 3
>
>
> 7
>
>
> 5
>
>
> 6
>
>
> 2
>
>
> 8
>
>
> 10
>
>
> 11
>
>
>
>
> 9
>
>
> 8
>
>
> 1
>
>
> 4
>
>
> 8
>
>
> 3
>
>
> 10
>
>
> 5
>
>
> 7
>
>
> 11
>
>
> 12
>
>
> 6
>
>
>
>
> 3
>
>
> 10
>
>
> 4
>
>
> 8
>
>
> 10
>
>
> 9
>
>
> 6
>
>
> 11
>
>
> 5
>
>
> 7
>
>
> 2
>
>
> 12
>
>
>
>
> 11
>
>
> 1
>
>
> 8
>
>
> 3
>
>
> 1
>
>
> 5
>
>
> 9
>
>
> 2
>
>
> 12
>
>
> 6
>
>
> 7
>
>
> 10
>
>
>
>
> 5
>
>
> 4
>
>
> 3
>
>
> 12
>
>
> 4
>
>
> 11
>
>
> 2
>
>
> 9
>
>
> 1
>
>
> 10
>
>
> 6
>
>
> 7
>
>
>
>
> 7
>
>
> 12
>
>
> 9
>
>
> 6
>
>
> 12
>
>
> 4
>
>
> 1
>
>
> 10
>
>
> 11
>
>
> 2
>
>
> 8
>
>
> 3
>
>
>
>
> 2
>
>
> 9
>
>
> 6
>
>
> 7
>
>
> 9
>
>
> 10
>
>
> 3
>
>
> 1
>
>
> 8
>
>
> 5
>
>
> 11
>
>
> 4
>
>
>
>
> 12
>
>
> 11
>
>
> 7
>
>
> 2
>
>
> 11
>
>
> 1
>
>
> 8
>
>
> 4
>
>
> 10
>
>
> 3
>
>
> 5
>
>
> 9
>
>
>
>
> 10
>
>
> 6
>
>
> 2
>
>
> 11
>
>
> 6
>
>
> 12
>
>
> 4
>
>
> 8
>
>
> 3
>
>
> 1
>
>
> 9
>
>
> 5
>
>
>
>
> 8
>
>
> 7
>
>
> 11
>
>
> 5
>
>
> 7
>
>
> 6
>
>
> 12
>
>
> 3
>
>
> 9
>
>
> 4
>
>
> 1
>
>
> 2
>
>
>
>
> 6
>
>
> 2
>
>
> 5
>
>
> 10
>
>
> 2
>
>
> 8
>
>
> 7
>
>
> 12
>
>
> 4
>
>
> 9
>
>
> 3
>
>
> 1
>
>
>
>
> Â
>
> Actually you can go on like this
> and as you could see based on this first sub section of LK table itself, and
> there too by interchanging the 2nd column with other columns I can
> create 10 such tables which satisfies all the above three base rules. Similarly
> I can repeat the procedure with the 3rd column. For example I can
> create the following tables â€"
>
> Â
>
>
>
>
> 1
>
>
> 9
>
>
> 10
>
>
> 3
>
>
> 5
>
>
> 2
>
>
> 11
>
>
> 7
>
>
> 6
>
>
> 12
>
>
> 4
>
>
> 8
>
>
>
>
> 4
>
>
> 1
>
>
> 12
>
>
> 9
>
>
> 3
>
>
> 7
>
>
> 5
>
>
> 6
>
>
> 2
>
>
> 8
>
>
> 10
>
>
> 11
>
>
>
>
> 9
>
>
> 4
>
>
> 1
>
>
> 2
>
>
> 8
>
>
> 3
>
>
> 10
>
>
> 5
>
>
> 7
>
>
> 11
>
>
> 12
>
>
> 6
>
>
>
>
> 3
>
>
> 8
>
>
> 4
>
>
> 1
>
>
> 10
>
>
> 9
>
>
> 6
>
>
> 11
>
>
> 5
>
>
> 7
>
>
> 2
>
>
> 12
>
>
>
>
> 11
>
>
> 3
>
>
> 8
>
>
> 4
>
>
> 1
>
>
> 5
>
>
> 9
>
>
> 2
>
>
> 12
>
>
> 6
>
>
> 7
>
>
> 10
>
>
>
>
> 5
>
>
> 12
>
>
> 3
>
>
> 8
>
>
> 4
>
>
> 11
>
>
> 2
>
>
> 9
>
>
> 1
>
>
> 10
>
>
> 6
>
>
> 7
>
>
>
>
> 7
>
>
> 6
>
>
> 9
>
>
> 5
>
>
> 12
>
>
> 4
>
>
> 1
>
>
> 10
>
>
> 11
>
>
> 2
>
>
> 8
>
>
> 3
>
>
>
>
> 2
>
>
> 7
>
>
> 6
>
>
> 12
>
>
> 9
>
>
> 10
>
>
> 3
>
>
> 1
>
>
> 8
>
>
> 5
>
>
> 11
>
>
> 4
>
>
>
>
> 12
>
>
> 2
>
>
> 7
>
>
> 6
>
>
> 11
>
>
> 1
>
>
> 8
>
>
> 4
>
>
> 10
>
>
> 3
>
>
> 5
>
>
> 9
>
>
>
>
> 10
>
>
> 11
>
>
> 2
>
>
> 7
>
>
> 6
>
>
> 12
>
>
> 4
>
>
> 8
>
>
> 3
>
>
> 1
>
>
> 9
>
>
> 5
>
>
>
>
> 8
>
>
> 5
>
>
> 11
>
>
> 10
>
>
> 7
>
>
> 6
>
>
> 12
>
>
> 3
>
>
> 9
>
>
> 4
>
>
> 1
>
>
> 2
>
>
>
>
> 6
>
>
> 10
>
>
> 5
>
>
> 11
>
>
> 2
>
>
> 8
>
>
> 7
>
>
> 12
>
>
> 4
>
>
> 9
>
>
> 3
>
>
> 1
>
>
>
>
> Â
>
>
>
>
> 1
>
>
> 9
>
>
> 3
>
>
> 10
>
>
> 5
>
>
> 2
>
>
> 11
>
>
> 7
>
>
> 6
>
>
> 12
>
>
> 4
>
>
> 8
>
>
>
>
> 4
>
>
> 1
>
>
> 9
>
>
> 12
>
>
> 3
>
>
> 7
>
>
> 5
>
>
> 6
>
>
> 2
>
>
> 8
>
>
> 10
>
>
> 11
>
>
>
>
> 9
>
>
> 4
>
>
> 2
>
>
> 1
>
>
> 8
>
>
> 3
>
>
> 10
>
>
> 5
>
>
> 7
>
>
> 11
>
>
> 12
>
>
> 6
>
>
>
>
> 3
>
>
> 8
>
>
> 1
>
>
> 4
>
>
> 10
>
>
> 9
>
>
> 6
>
>
> 11
>
>
> 5
>
>
> 7
>
>
> 2
>
>
> 12
>
>
>
>
> 11
>
>
> 3
>
>
> 4
>
>
> 8
>
>
> 1
>
>
> 5
>
>
> 9
>
>
> 2
>
>
> 12
>
>
> 6
>
>
> 7
>
>
> 10
>
>
>
>
> 5
>
>
> 12
>
>
> 8
>
>
> 3
>
>
> 4
>
>
> 11
>
>
> 2
>
>
> 9
>
>
> 1
>
>
> 10
>
>
> 6
>
>
> 7
>
>
>
>
> 7
>
>
> 6
>
>
> 5
>
>
> 9
>
>
> 12
>
>
> 4
>
>
> 1
>
>
> 10
>
>
> 11
>
>
> 2
>
>
> 8
>
>
> 3
>
>
>
>
> 2
>
>
> 7
>
>
> 12
>
>
> 6
>
>
> 9
>
>
> 10
>
>
> 3
>
>
> 1
>
>
> 8
>
>
> 5
>
>
> 11
>
>
> 4
>
>
>
>
> 12
>
>
> 2
>
>
> 6
>
>
> 7
>
>
> 11
>
>
> 1
>
>
> 8
>
>
> 4
>
>
> 10
>
>
> 3
>
>
> 5
>
>
> 9
>
>
>
>
> 10
>
>
> 11
>
>
> 7
>
>
> 2
>
>
> 6
>
>
> 12
>
>
> 4
>
>
> 8
>
>
> 3
>
>
> 1
>
>
> 9
>
>
> 5
>
>
>
>
> 8
>
>
> 5
>
>
> 10
>
>
> 11
>
>
> 7
>
>
> 6
>
>
> 12
>
>
> 3
>
>
> 9
>
>
> 4
>
>
> 1
>
>
> 2
>
>
>
>
> 6
>
>
> 10
>
>
> 11
>
>
> 5
>
>
> 2
>
>
> 8
>
>
> 7
>
>
> 12
>
>
> 4
>
>
> 9
>
>
> 3
>
>
> 1
>
>
>
>
> Â
>
>
>
>
> 1
>
>
> 9
>
>
> 5
>
>
> 3
>
>
> 10
>
>
> 2
>
>
> 11
>
>
> 7
>
>
> 6
>
>
> 12
>
>
> 4
>
>
> 8
>
>
>
>
> 4
>
>
> 1
>
>
> 3
>
>
> 9
>
>
> 12
>
>
> 7
>
>
> 5
>
>
> 6
>
>
> 2
>
>
> 8
>
>
> 10
>
>
> 11
>
>
>
>
> 9
>
>
> 4
>
>
> 8
>
>
> 2
>
>
> 1
>
>
> 3
>
>
> 10
>
>
> 5
>
>
> 7
>
>
> 11
>
>
> 12
>
>
> 6
>
>
>
>
> 3
>
>
> 8
>
>
> 10
>
>
> 1
>
>
> 4
>
>
> 9
>
>
> 6
>
>
> 11
>
>
> 5
>
>
> 7
>
>
> 2
>
>
> 12
>
>
>
>
> 11
>
>
> 3
>
>
> 1
>
>
> 4
>
>
> 8
>
>
> 5
>
>
> 9
>
>
> 2
>
>
> 12
>
>
> 6
>
>
> 7
>
>
> 10
>
>
>
>
> 5
>
>
> 12
>
>
> 4
>
>
> 8
>
>
> 3
>
>
> 11
>
>
> 2
>
>
> 9
>
>
> 1
>
>
> 10
>
>
> 6
>
>
> 7
>
>
>
>
> 7
>
>
> 6
>
>
> 12
>
>
> 5
>
>
> 9
>
>
> 4
>
>
> 1
>
>
> 10
>
>
> 11
>
>
> 2
>
>
> 8
>
>
> 3
>
>
>
>
> 2
>
>
> 7
>
>
> 9
>
>
> 12
>
>
> 6
>
>
> 10
>
>
> 3
>
>
> 1
>
>
> 8
>
>
> 5
>
>
> 11
>
>
> 4
>
>
>
>
> 12
>
>
> 2
>
>
> 11
>
>
> 6
>
>
> 7
>
>
> 1
>
>
> 8
>
>
> 4
>
>
> 10
>
>
> 3
>
>
> 5
>
>
> 9
>
>
>
>
> 10
>
>
> 11
>
>
> 6
>
>
> 7
>
>
> 2
>
>
> 12
>
>
> 4
>
>
> 8
>
>
> 3
>
>
> 1
>
>
> 9
>
>
> 5
>
>
>
>
> 8
>
>
> 5
>
>
> 7
>
>
> 10
>
>
> 11
>
>
> 6
>
>
> 12
>
>
> 3
>
>
> 9
>
>
> 4
>
>
> 1
>
>
> 2
>
>
>
>
> 6
>
>
> 10
>
>
> 2
>
>
> 11
>
>
> 5
>
>
> 8
>
>
> 7
>
>
> 12
>
>
> 4
>
>
> 9
>
>
> 3
>
>
> 1
>
>
>
>
> Â
>
> The process can go on and I can
> again get 9 more such tables! Thus in short based on the first sub-section of LK
> table itself, I can create â€" 10+9+8+7+6+5+4+3+2 = 54 such unique 12 x 12 matrices
> for which no house number repeats in the row or column! The same is possible
> with other LK sub-sections as well. Further I can create such tables by
> interchanging some row values and thus producing new such sub-sections that are
> not listed in LK varshaphal table!
>
>
>
> So the final and the best
> question is â€" out of the hundreds of such 12 x 12 matrices with the uniqueness of non-repeating row and
> column values WHY Rupchand Joshi selected only these 10 matrices? What is
> special about them? The simple answer is â€" I don’t know. But certainly I can
> say that if someone provides a mathematically and logically correct answer to
> this question, then in that moment ends the mystery of LK varshaphal table. Because
> for sure in the answer to this question that the secret behind LK varshaphal
> table lies. Â
>
>
> Â
>
>
> ========================
> Love and regards,
> Sreenadh
>
------------------------------------
Yahoo! Groups Links
<*> To visit your group on the web, go to:
http://groups.yahoo.com/group/astrostudents/<*> Your email settings:
Individual Email | Traditional
<*> To change settings online go to:
http://groups.yahoo.com/group/astrostudents/join (Yahoo! ID required)
<*> To change settings via email:
astrostudents-digest@yahoogroups.com astrostudents-fullfeatured@yahoogroups.com<*> To unsubscribe from this group, send an email to:
astrostudents-unsubscribe@yahoogroups.com<*> Your use of Yahoo! Groups is subject to:
http://docs.yahoo.com/info/terms/